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1. Introduction. Expansions of functions either in the usual Fourier-Bessel series 
or in Dini series are often necessary in the solution of problems in physics or engi- 
neering for which the use of cylindrical coordinates is appropriate. Determination 
of the coefficients in these expansions requires the evaluation of integrals. In two 
quite different nonlinear physical problems [1], [2], (see also [3]) the need for in- 
tegrals of products of three or four Bessel functions has been encountered. In the 
belief that these integrals may have application to other nonlinear problems in- 
volving Fourier-Bessel or Dini expansions, the authors present herein the values of 
the particular integrals needed for their own problems. In Section 2, integrals of 
products of four Bessel functions involving eigenvalues satisfying Jo(x) = 0 are 
treated. In Section 3, integrals of products of three or four Bessel functions involv- 
ing eigenvalues satisfying Jl(x) = 0 are presented. A brief discussion of the com- 
putational procedure and of the accuracy of the results is given in Section 4. 

2. Integrals Involving Eigenvalues Satisfying Jo(x) = 0. Let Kn, n > 1, be the 
positive eigenvalues, arranged in ascending order of magnitude, for which 

(1) Jo(Kn) = 0 

Let us introduce the shortened notation 

(2) Jmn - Jm(KnTr) m = O or , 

and define the integral operator I(F) as 

(3) I(F)-f rF(r)dr. 

Fourier-Bessel expansions arising in the theory of oscillation of a circular membrane 
on a nonlinear Duffing-type foundation [1], [3] involve integrals I(F) for which the 
functions F(r) are products of four Bessel functions with arguments containing the 
eigenvalues (1). Integrals required for the second-order membrane solution for gen- 
eral values of the tension parameter and those required for the first-order solution 
for tensions near the particular first-order critical tension T33 are listed in Table 1. 

Each function wvith which we are concerned in this paper is sufficiently well be- 
haved that the appropriate series expansion (Fourier-Bessel or Dini) is uniformly 
convergent to the function in the closed interval, 0 < r < 1, [4, Chapter 18]. For 
each function G(r) for which the first ten Fourier-Bessel coefficients are determin- 
able from the integrals of Table 1 and for which the first ten Fourier-Bessel terms 
adequately represent the function, comparison of the successive partial sums which 
approximate the right side of the identity 
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(4) G(O) = 2 
J2(Kn) n=1 J12K, 

provides an accuracy check. 
Since Fettis [5] has presented values of I(JoiJojJok) calculated by a different 

TABLE 1 

Integrals I(F) of functions F(r) for eigenvalues Kn given by r-oots of Eq. (1). 

F (r) 100 I (F) F (r) 100 I(F) 

Jo4 7.62101 JAloso -0.00261 
0JolJ2 2.39034 JolJosJo9 0.00068 
0JolJ3 0.08820 JolJosJolo -0.00025- 

J01Jo4 -0.00810 Jo 026 0.83610 
0JolJo 0.00177 J2olJo6Jo7 0.41030 
0JolJ6 -0.00056 J2olJo6Jo8 0.01933 
0JolJ7 0.00022 JolJo6Jo9 -0.00223 
0Jo8Jo -0.00010 1J0oJ6Jo10 0-00059 
0Jo9Jo 0.00005- J2O 027 0.71181 

JoiJoio -0.00003 J2olJo7Jo8 0.35324 
J20lj2 2.80757 A 

lJo7Jo9 0.01678 
JolJo2Jo3 1.18217 JolJo7Jo10 -0.00195+ 
JolJo2Jo4 0.05064 JO 08o 0.61973 
JolJO2Jo5 -0.00535- JolJo8Jo9 0.31015+ 

J2olJo2Jo6 0.00130 JolJo8Jo10 0.01483 
JolJo2Jo7 -0.00044 0Jo9Jo 0.54877 
J2olJo2Jo8 0.00019 0J2o9JosJo 0.27646 
J2olJo2Jo9 -0.00009 0 010ol 0.49239 
J2olJo2Jo1O 0.00005- J01Jo2 03 0.76184 
J 2lj20 1.76106 jOlJj3 0.49830 
JolJo3Jo4 0.80034 0oJ23Jo4 0.44991 

JolJo3Jo5 0.03584 0oJo3J 0.53300 
J2olJo3Jo6 -0.00395+ 0oJ3Jo6 0.31108 
JolJo3Jo7 0.00100 0oJ23Jo7 0.01619 
JolJo3Jo8 -0.00035- 0oJ23Jo8 -0.00212 

JolJo3Jo9 0.00015+ 0oJ23Jo9 0.00061 
JolJo3Jo10 -0.00007 0oJ3Jo10 -0.00024 

JO 0o4 1.28576 J02 03 0.59604 
J2olJo4Jo5 0.607005- J03 0.83760 
JolJo4Jo6 0.02785- 0o3Jo4 0.44321 
JolJo4Jo7 -0.00314 Jo3Jo5 0.28351 
JolJo4Jo8 0.00081 0o3Jo6 0.21278 
JolJo4Jo9 -0.00029 0o3Jo7 0.16714 
J2olJo4Jo1O 0.00013 Jo3Jo8 0.12788 
J0 J05 1.01313 Jo3Jo9 0.00781 
JolJo5Jo6 0.48951 0o3Jo10 -0.00123 
JolJo5Jo7 0.02281 
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TABLE 2 

Integrals I(F) of functions F(r) for eigenvalues Kn given by roots of Eq. (5). 

F(r) 100 I(F) F(r) 100 I(F) 

jg, 2.85725+ J01J06Jo8 0.00879 
J201JO2 2.15858 J01J06JO9 -0.00115- 
J01Jo3 0.02145+ J01J06Jo10 0.00030 
J201Jo4 -0.00202 J01Jo7 0.40048 
J01Jo5 0.00040 Jo1Jo7Jo8 0.46119 
J01Jo6 -0.00011 Jo1Jo7Jo9 0.00777 
J01Jo7 0.00004 Jo1Jo7Jo10 - 0.00103 
J01Jo8 -0.00002 Jo0J8 0.35151 
J01JO9 0.00001 J01J08Jo9 0.40823 
J2oJo0o -0.00000 J01J08Jo10 0.00696 

0olJ2o2 1.35985- Jo0J9 0.31324 
Jo1Jo2Jo3 1.32595+ J01Jo9J010 0.36620 
Jo1Jo2Jo4 0.01766 Jo1Jo10 0.28251 
Jo1Jo2JO5 --0.00195- 4o1 3.35702 
J01J02Jo6 0.00044 J01Jo2 1.42132 
J01J02JO7 -0.00014 J01Jo3 0.64857 

Jo1Jo2Jo8 0.00005+ 
JOJJk4 

0.01395- 

Jo1Jo2Jo9 -0.00002 jol 05 -0.00126 
Jo1Jo2Jo10 0.00001 J01Jo6 0.00026 

JolJ203 0.91289 J01Jo7 -0.00008 
Jo1Jo3Jo4 0.96206 J01Jo8 0.00003 
Jo1JO3Jo5 0.01429 J01Jo9 -0.00001 

Jo1Jo3Jo6 -0.00170 J3 Jo0o 0.00001 

Jo1JO3JO7 0.00041 J01Jo2J 1 -0.08346 
Jo1J03JO8 -0.00014 J01J3JO3 - 0.43773 
Jo1Jo3Jo9 0.00005+ 

JOJJk4 
- 0.02113 

Jo1Jo3Jo10 - 0.00002 J 11Jo5Jl1 0.00326 
0olJo4 0.69023 J01J6JO6 - 0.00101 

Jo1Jo4Jo5 0.75603 J01Jo7J 1 0.00042 
Jo1Jo4Jo6 0.01187 J01J8JO8 - 0.00020 
Jo1Jo4Jo7 -0.00148 Jo0Jo9J21 0.00011 
J1Jo4Jo8 0.00037 Jo0Jjo0Jj2 -0.00007 
Jo1Jo4Jo9 -0.00013 Jo1Ji3/Kir 0.65784 
Jo1Jo4Jo10 0.00005+ Jo2 Jl1/K1r -0.34902 
Jo0Jo5 0.55573 Jo3 J 1/K1r -0.15058 
Jo1Jo5Jo6 0.62304 Jo4J 1/K1r 0.00611 
Jo1Jo5Jo7 0.01011 JO5J3 1/K1r -0.00207 
Jo1Jo5Jo8 -0.00129 Jo6J 11/K1r 0.00086 
Jo1Jo5Jo9 0.00033 Jo7J 1/K1r -0.00042 
Jo1Jo5Jo1o - 0.00012 Jo8 J13/K1r 0.00022 
Jo0Jo6 0.46541 Jo9 J11/Kir -0.00013 
Jo1Jo6Jo7 0.52999 JojoJ3 I/K,r 0.00008 
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scheme for all distinct combinations of i, j, k selected from among the integers 1, 2, 
3, we applied our method to these same ten integrals. In six cases the magnitudes 
of our results and of Fettis' are identical; however, the sign of I(J'01Jo3) was incor- 
rectly shown as positive by Fettis, when actually I(JA1J03) is negative. Our results 
differ from those of Fettis in two cases by 1 X 10- and in two cases by 2 X 10-7. 

Throughout this section, including Table 1, Kn have been the roots of (1); in 
Section 3, however, Kn will be the roots of (5). 

3. Integrals Involving Eigenvalues Satisfying Jl(x) = 0. Let Kn, n > 0, now 
be the eigenvalues for which 

(5) Ji(Kn) = ?0 Kn > 0) 
arranged in ascending order of magnitude beginning with Ko = 0. Again we use 
the notation of (2) and (3). Dini series expansions arising in the theory of finite- 
amplitude axisymmetric gravity waves [2] involve integrals I(F) for which the func- 
tions F(r) are products of three or four Bessel functions with arguments containing 
the eigenvalues (5). Integrals required through the second nonlinear order in the 
gravity-wave solution are listed in Table 2. 

Other integrals needed for gravity-wave theory are given in terms of those in 
Table 2 by the identities 

(6) I (J 1ll 3 I(o4) 

(7) I(J31/Kir) = 3 
I(j31) 

obtained from the results of Mack [6], and 

(8) I(J1lJlpJon) = K1 +KP -Kn2 I(Jo0JopJo0) I 
2K1Kp 

obtained from the results of Fettis [5]. 
Values of I(J2lJon), 0 < n < 8 and of I(J11J12J0n) I 0 < n < 6 were computed 

both by direct integration and, by use of (8), from I(J',Jo.) and I(J01J02J0n), re- 
spectively; likewise, I(JolJ21) and I(J3h/Kir) were computed by direct integration 
and by use of (6) and (7), respectively. For each such integral the two values ob- 
tained differed by only about one-tenth the presumed error (see Section 4) in the 
individual integrals. An equally favorable comparison was obtained between the 
direct integration of I(J3nJ0n), 0 < n < 8, and the values given by 

(9)I (j31jo) =2E I (Jo1J0Om) I (J01J0mJ0n) (9) 0I(glOn =2 Z 0(m 

m=o Jo (Kmn) 
a special case of [6, Eq. (19), in which the subscript p should read 0]. For each func- 
tion H(r) for which the first eleven Dini coefficients are determinable either directly 
or by use of (6), (7), or (8) from the integrals of Table 2 and for which the first 
eleven Dini terms adequately represent the function, comparison of the successive 
partial sums which approximate the right side of the identity 

(10) H(0) = 2 E I(HJ2 ) 
npiO Jo (Kc) 

provides an accuracy check. 
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Although we have not yet found an analytical proof, the numerical result very 
strongly suggests that 

(11 ) I(Jo1Jli/Kir) = 4 Jo4(K1) 

4. Computational Procedure. The individual Bessel functions were generated by 
use of the well-known expression 

(12) Jm(x) - cos(xsill0-mO)d , m>0, 
7ro 

in which the generating integrals were evaluated by Gill's method [7]. Various step 
sizes were tried and the results were checked against standard tables [8]. It was 
found that 60 increments gave the best results, the errors in the values of Jo(x) and 
Ji(x) for 0 < x < 30 being of the order of 10-8. 

The desired integrals of products of Bessel functions were also evaluated by 
Gill's method, the number of increments used being increased with increases in the 
number of zeros which the product possesses in the range of integration. As a check 
on the accuracy of the procedure, those products of two Bessel functions whose 
integrals are known from the orthogonality relations were computed. In no case 
was the error as great as 4 X 10-8. It is thus believed that for the majority of the 
integrals presented in Tables 1 and 2 the last digit shown is correct, although it is 
probable that the last digit is in error by one or even two units for some of the 
values. Other checks confirming the accuracy of the computations have already 
beenl mentioned in Sections 2 and 3. 

No claim is made that the numerical-integration procedure followed is neces- 
sarily the most efficient one. 
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